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ABSTRACT
Although there are several visually-aware recommendation models
in domains like fashion or even movies, the art domain lacks the
same level of research attention, despite the recent growth of the
online artwork market. To reduce this gap, in this article we intro-
duce CuratorNet, a neural network architecture for visually-aware
recommendation of art images. CuratorNet is designed at the core
with the goal of maximizing generalization: the network has a fixed
set of parameters that only need to be trained once, and thereafter
the model is able to generalize to new users or items never seen
before, without further training. This is achieved by leveraging
visual content: items are mapped to item vectors through visual
embeddings, and users are mapped to user vectors by aggregating
the visual content of items they have consumed. Besides the model
architecture, we also introduce novel triplet sampling strategies to
build a training set for rank learning in the art domain, resulting in
more effective learning than naive random sampling. With an eval-
uation over a real-world dataset of physical paintings, we show that
CuratorNet achieves the best performance among several baselines,
including the state-of-the-art model VBPR. CuratorNet is motivated
and evaluated in the art domain, but its architecture and training
scheme could be adapted to recommend images in other areas.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Machine learning approaches; • Ap-
plied computing→ Media arts.
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1 INTRODUCTION
The big revolution of deep convolutional neural networks (CNN)
in the area of computer vision for tasks such as image classification
[18, 27, 41], object recognition [1], image segmentation [3] or scene
identification [40] has reached the area of image recommender sys-
tems in recent years [19, 20, 22, 29, 30, 32]. These works use neural
visual embeddings to improve the recommendation performance
compared to previous approaches for image recommendation based
on ratings and text [2], social tags [39], context [5] and manually
∗Also with Millennium Institute Foundational Research on Data, IMFD.
†Also with Millennium Institute Foundational Research on Data, IMFD.
‡Also with Millennium Institute Foundational Research on Data, IMFD.

crafted visual features [43]. Regarding application domains of recent
image recommendation methods using neural visual embeddings,
to the best of our knowledge most of them focus on fashion recom-
mendation [20, 22, 30], a few on art recommendation [19, 32] and
photo recommendation [29]. He et al. [19] proposed Vista, a model
combining neural visual embeddings, collaborative filtering as well
as temporal and social signals for digital art recommendation.

However, digital art projects can differ significantly from physi-
cal art (paintings and photographs). Messina et al. [32] study recom-
mendation of paintings in an online art store using a simple k-NN
model based on neural visual features and metadata. Although
memory-based models perform fairly well, model-based methods
using neural visual features report better performance [19, 20] in
the fashion domain, indicating room for improvement in this area,
considering the growing sales in the global online artwork market1.

The most popular model-based method for image recommenda-
tion using neural visual embeddings is VBPR [20], a state-of-the-art
model that integrates implicit feedback collaborative filtering with
neural visual embeddings into a Bayesian Personalized Ranking
(BPR) learning framework [33]. VBPR performs well, but it has
some drawbacks. VBPR learns a latent embedding for each user
and for each item, so new users cannot receive suggestions and
new items cannot be recommended until re-training is carried out.
An alternative is training a model such as Youtube’s Deep Neural
Recommender [8] which allows to recommend to new users with
little preference feedback and without additional model training.
However, Youtube’s model was trained on millions of user transac-
tions and with large amounts of profile and contextual data, so it
does not easily fit to datasets that are small, with little user feedback
or with little contextual and profile data.

In this work, we introduce a neural network for visually-aware
recommendation of images focused on visual art named Curator-
Net, whose general structure can be seen in Figure 1. CuratorNet
leverages neural image embeddings as those obtained from CNNs
[18, 27, 41] pre-trained on the Imagenet dataset (ILSVRC [36]). We
train CuratorNet for ranking with triplets (𝑃𝑢 , 𝑖+, 𝑗−), where 𝑃𝑢 is
the history of image preferences of a user 𝑢, whereas 𝑖+ and 𝑗− are
a pair of images with higher and lower preference respectively. Cu-
ratorNet draws inspiration from VBPR [20] and Youtube’s Recom-
mender System [8]. VBPR [20] inspired us to leverage pre-trained
image embeddings as well as optimizing the model for ranking as in

1https://www.artsy.net/article/artsy-editorial-global-art-market-reached-674-
billion-2018-6
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BPR [33]. From the work of Convington et al. [8] we took the idea
of designing a deep neural network that can generalize to new users
without introducing new parameters or further training (unlike
VBPR which needs to learn a latent user vector for each new user).
As a result, CuratorNet can recommend to new users with very
little feedback, and without additional training CuratorNet’s deep
neural network is trained for personalized ranking using triplets
and the architecture contains a set of layers with shared weights,
inspired by models using triplet loss for non-personalized image
ranking [38, 44]. In these works, a single image represents the input
query, but in our case, the input query is a set images representing
a user preference history, 𝑃𝑢 . In summary, compared to previous
works, our main contributions are:

• a novel neural-based visually-aware architecture for image
recommendation,

• a set of sampling guidelines for the creation of the training
dataset (triplets), which improve the performance of Cu-
ratorNet as well as VBPR with respect to random negative
sampling, and

• presenting a thorough evaluation of the method against
competitive state-of-the-art methods (VisRank [22, 32] and
VBPR[20]) on a dataset of purchases of physical art (paintings
and photographs).

We also share the dataset2 of user transactions (with hashed
user and item IDs due to privacy requirements) as well as visual
embeddings of the paintings image files. One aspect to highlight
about this research, is that although the triplets’ sampling guidelines
to build the BPR training set apply specifically to visual art, the
architecture of CuratorNet can be used in other visual domains for
image recommendation.

2 RELATEDWORK
In this section we provide an overview of relevant related work,
considering: Artwork Recommender Systems (2.1), Visually-aware
Recommender Systems (2.2), as well as highlights of what differenti-
ates our work to the existing literature.

2.1 Artwork Recommender Systems
With respect to artwork recommender systems, one of the first
contributions was the CHIP Project [2]. The aim of the project
was to build a recommendation system for the Rijksmuseum. The
project used traditional techniques such as content-based filtering
based on metadata provided by experts, as well as collaborative
filtering based on users’ ratings. Another similar system but non-
personalized was 𝑚4𝑎𝑟𝑡 by Van den Broek et al. [43], who used
color histograms to retrieve similar art images given a painting as
input query.

Another important contribution is the work by Semeraro et al.
[39], who introduced an artwork recommender system called FIRSt
(Folksonomy-based Item Recommender syStem) which utilizes so-
cial tags given by experts and non-experts of over 65 paintings of
the Vatican picture gallery. They did not employ visual features
among their methods. Benouaret et al. [5] improved the state-of-
the-art in artwork recommender systems using context obtained

2https://drive.google.com/drive/folders/1Dk7_BRNtN_IL8r64xAo6GdOYEycivtLy

through a mobile application, with the aim of making museum tour
recommendations more useful. Their content-based approach used
ratings given by the users during the tour and metadata from the
artworks rated, e.g. title or artist names.

Finally, the most recent works use neural image embeddings
[19, 32]. He et al. [19] propose the system Vista, which addresses
digital artwork recommendations based on pre-trained deep neural
visual features, as well as temporal and social data. On the other
hand, Messina et al. [32] address the recommendation of one-of-a-
kind physical paintings, comparing the performance of metadata,
manually-curated visual features, and neural visual embeddings.
Messina et al. [32] recommend to users by computing a simple
K-NN based similarity score among users’ purchased paintings and
the paintings in the dataset, a method that Kang et al. [22] call
VisRank.

2.2 Visually-aware Image Recommender
Systems

In this section we survey works using visual features to recom-
mend images. We also cite a few works using visual information to
recommend non-image items, but these are not too relevant for the
present research.

Manually-engineered visual features extracted from images (tex-
ture, sharpness, brightness, etc.) have been used in several tasks
for information filtering, such as retrieval [28, 35, 43] and ranking
[37]. More recently, interesting results have been shown for the
use of low-level handcrafted stylistic visual features automatically
extracted from video frames for content-based video recommen-
dation [11]. Even better results are obtained when both stylistic
visual features and annotated metadata are combined in a hybrid
recommender, as shown in the work of Elahi et al. [13]. In a visually-
aware setting not related to recommending images, Elsweiller et al.
[14] used manually-crafted attractiveness visual features [37], in
order to recommend healthy food recipes to users.

Another branch of visually-aware image recommender systems
focuses on using neural embeddings to represent images [19, 20,
22, 29, 32]. The computer vision community has a large track of
successful systems based on neural networks for several tasks
[1, 3, 18, 27, 40, 41]. This trend started from the outstanding per-
formance of the AlexNet [27] in the Imagenet Large Scale Visual
Recognition challenge (ILSVRC [36]), but the most notable implica-
tion is that the neural image embeddings have shown impressive
performance for transfer learning, i.e., for tasks different from the
original one [10, 26]. Usually these neural image embeddings are
obtained from CNN models such as AlexNet [27], VGG [41] and
ResNet [18], among others. Motivated by these results, McAuley et
al. [30] introduced an image-based recommendation system based
on styles and substitutes for clothing using visual embeddings pre-
trained on a large-scale dataset obtained from Amazon.com. Later,
He et al. [20] went further in this line of research and introduced
a visually-aware matrix factorization approach that incorporates
visual signals (from a pre-trained CNN) into predictors of people’s
opinions, called VBPR. Their training model is based on Bayesian
Personalized Ranking (BPR), a model previously introduced by
Rendle et al. [33].

https://drive.google.com/drive/folders/1Dk7_BRNtN_IL8r64xAo6GdOYEycivtLy
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The next work by He et al. [19] deals with visually-aware digital
art recommendation, building a model called Vista which combines
ratings, temporal and social signals and visual features.

Another relevant work was the research by Lei et al. [29] who
introduced comparative deep learning for hybrid image recommen-
dation. In this work, they use a siamese neural network architecture
for making recommendations of images using user information
(such as demographics and social tags) as well as images in pairs
(one liked, one disliked) in order to build a ranking model. The ap-
proach is interesting, but they work with Flickr photos, not artwork
images, and use social tags, not present in our problem setting. The
work by Kang et al. [22] expands VBPR but they focus on generat-
ing images using Generative adversarial networks [17] rather than
recommending, with an application in the fashion domain. Finally,
Messina et al. [32] was already mentioned, but we can add that their
neural image embeddings outperformed other visual (manually-
extracted) and metadata features for ranking, with the exception of
the metadata given by user’s favorite artist, which predicted even
better than neural embeddings for top@k recommendation.

2.3 Differences to Previous Research
Almost all the surveyed articles on artwork recommendation have
in common that they used standard techniques such as collabo-
rative filtering and content-based filtering, as well as manually-
curated visual image features, but only the most recent works have
exploited visual features extracted from CNNs [19, 32]. In compari-
son to these works, we introduce a model-based approach (unlike
the memory-based VisRank method by Messina et al. [32]) and
which recommends to cold-start items and users without additional
model training (unlike [19]). With regards to more general work
on visually-aware image recommender systems, almost all of the
surveyed articles have focused on tasks different from art recom-
mendation, such as fashion recommendation [20, 22, 30], photo
[29] and video recommendation [13]. Only Vista, the work by He et
al. [19], resembles ours in terms of the topic (art recommendation)
and the use of visual features. Unlike them, we evaluate our pro-
posed method, CuratorNet, in a dataset of physical paintings and
photographs, not only digital art. Moreover, Vista uses social and
temporal metadata which we do not have and many other datasets
might not have either. Compared to all these previous research, and
to the best of our knowledge, CuratorNet is the first architecture
for image recommendation that takes advantage of shared weights
in a triplet loss setting, an idea inspired by the results of Wang et
al. [44] and Schroff et al. [38], but here adapted to the personalized
image recommendation domain.

3 CURATORNET
3.1 Problem Formulation
We approach the problem of recommending art images from user
positive-only feedback (e.g., purchase history, likes, etc.) upon visual
items (paintings, photographs, etc.). Let𝑈 and 𝐼 be the set of users
and items in a dataset, respectively. We assume only one image
per each single item 𝑖 ∈ 𝐼 . Considering either user purchases or
likes, the set of items for which a user 𝑢 has expressed positive
preference is defined as 𝐼+𝑢 . In this work, we considered purchases
to be positive feedback from the user. Our goal is to generate for

Table 1: Notation for CuratorNet.

Symbol Description

𝑈 , 𝐼 user set, item set
𝑢 a specific user
𝑖, 𝑗 a specific item (resp.)
𝑖+, 𝑗− a positive item and negative item (resp.)
𝐼+𝑢 or 𝑃𝑢 set of all items which the user 𝑢 has expressed a positive

preference (full history)
𝐼+
𝑢,𝑘

set of all items which the user 𝑢 has expressed a positive
preference up to his 𝑘-th purchase basket (inclusive)

𝑃𝑢,𝑘 set of all items which the user 𝑢 has expressed a positive
preference in his 𝑘-th purchase basket

each user 𝑢 ∈ 𝑈 a personalized ranked list of the items for which
the user still have not expressed preference, i.e., for 𝐼 \ 𝐼+𝑢 .

3.2 Preference Predictor
The preference predictor in CuratorNet is inspired by VBPR [20], a
state-of-the-art visual recommender model.

However,CuratorNet has some important differences. First,
we do not use non-visual latent factors, so we remove the traditional
user and item non-visual latent embeddings. Second, we do not
learn a specific embedding per user such as VBPR, but we learn a
joint model that, given a user’s purchase/like history, it outputs a
single embedding which can be used to rank unobserved artworks
in the dataset, similar to YouTube’s Deep Learning network [8].
Another important difference of VBPR with CuratorNet is that the
former has a single matrix E to project a visual item embedding 𝑓𝑖
into the user latent space. In CuratorNet, we rather learn a neural
network Φ(·) to perform that projection, which receives as input
either a single image embedding f𝑖 or a set of image embeddings
representing users’ purchase/like history 𝑃𝑢 = {f1, ..., f𝑁 } . Given
all these aspects, the preference predictor of CuratorNet is given
by:

𝑥𝑢,𝑖 = 𝛼 + 𝛽𝑢 + Φ(𝑃𝑢 )𝑇Φ(f𝑖 ) (1)

where 𝛼 is an offset, 𝛽𝑢 represents a user bias, Φ(·) represents
CuratorNet neural network and 𝑃𝑢 represents the set of visual
embeddings of the images in user𝑢 history. After some experiments
we found no differences between using or not a variable for item bias
𝛽𝑖 so we dropped it in order to decrease the number of parameters
(Occam’s razor).

Finally, since we calculate the model parameters using BPR [33],
the parameters 𝛼 , 𝛽𝑢 cancel out (details in the coming subsection)
and our final preference predictor is simply

𝑥𝑢,𝑖 = Φ(𝑃𝑢 )𝑇Φ(f𝑖 ) (2)

3.3 Model Learning via BPR
We use the Bayesian Personalized Ranking (BPR) framework [33]
to learn the model parameters. Our goal is to optimize ranking by
training a model which orders triples of the form (𝑢, 𝑖, 𝑗) ∈ DS ,
where 𝑢 denotes a user, 𝑖 an item with positive feedback from 𝑢,
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Figure 1: Architecture of CuratorNet showing in detail the layers with shared weights for training.

and 𝑗 an item with non-observed feedback from 𝑢. The training set
of triples DS is defined as:

DS = {(𝑢, 𝑖, 𝑗) |𝑢 ∈ 𝑈 ∧ 𝑖 ∈ 𝐼+𝑢 ∧ 𝑗 ∈ 𝐼 \ 𝐼+𝑢 } (3)
Table 1 shows that 𝐼𝑢+ denotes the set of all items with positive

feedback from𝑢 while 𝐼 \𝐼𝑢+ shows those itemswithout such positive
feedback. Considering our previously defined preference predictor
𝑥𝑢,𝑖 , we would expect a larger preference score of𝑢 over 𝑖 than over
𝑗 , then BPR defines the difference between scores

𝑥𝑢,𝑖, 𝑗 = 𝑥𝑢,𝑖 − 𝑥𝑢,𝑗 (4)
an then BPR aims at finding the parameters Θ which optimize

the objective function

argmax
Θ

∑︁
DS

ln𝜎 (𝑥𝑢,𝑖, 𝑗 ) − 𝜆Θ | |Θ| |2 (5)

where 𝜎 (·) is the sigmoid function, Θ includes all model param-
eters, and 𝜆Θ is a regularization hyperparameter.

In CuratorNet, unlike BPR-MF [33] and VBPR [20], we use a
sigmoid cross entropy loss, considering that we can interpret the
decision over triplets as a binary classification problem, where if
𝑥𝑢,𝑖, 𝑗 > 0 represents class 𝑐 = 1 (triple well ranked, since 𝑥𝑢,𝑖 > 𝑥𝑢,𝑗
) and 𝑥𝑢,𝑖, 𝑗 ≤ 0 signifies class 𝑐 = 0 (triplet wrongly ranked, since
𝑥𝑢,𝑖 ≤ 𝑥𝑢,𝑗 ). Then, CuratorNet loss can be expressed as:

L = −
∑︁
DS

𝑐 ln(𝜎 (𝑥𝑢,𝑖, 𝑗 )) + (1 − 𝑐) ln(1 − 𝜎 (𝑥𝑢,𝑖, 𝑗 )) + 𝜆Θ | |Θ| |2 (6)

where 𝑐 ∈ {0, 1} is the class, Θ includes all model parameters, 𝜆Θ
is a regularization hyperparameter, and 𝜎 (𝑥𝑢,𝑖, 𝑗 ) is the probability
that a user 𝑢 really prefers 𝑖 over 𝑗 , 𝑃 (𝑖 >𝑢 𝑗 |Θ) [33], calculated
with the sigmoid function, i.e.,

𝑃 (𝑖 >𝑢 𝑗 |Θ) = 𝜎 (𝑥𝑢,𝑖, 𝑗 ) =
1

1 + 𝑒−(𝑥𝑢,𝑖−𝑥𝑢,𝑗 )
(7)

We perform the optimization to learn the parameters which
reduce the loss function L by stochastic gradient descent with the

Adam optimizer [23], using the implementation in Tensorflow3.
During each iteration of stochastic gradient descent, we sample a
user𝑢, a positive item 𝑖 ∈ 𝐼𝑢+ (i.e., removed from 𝑃𝑢 ), a negative item
𝑗 ∈ 𝐼 \ 𝐼𝑢+ , and user 𝑢 purchase/like history with item 𝑖 removed,
i.e., 𝑃𝑢 \ 𝑖 .

3.4 Model Architecture
The architecture of the CuratorNet neural network is summarized in
Figure 1, but is presented with more details in Figure 1. For training,
each imput instance is expected to be a triple (𝑃𝑢 ,𝑖 , 𝑗 ), where 𝑃𝑢 is the
set of images in user 𝑢 history (purchases, likes) with a single item
𝑖 removed from the set, 𝑖 is an item with positive preference, and
𝑗 is an item with assumed negative user preference. The negative
user preference is assumed since the item 𝑗 is sampled from the
list of images which 𝑢 has not interacted with yet. Each image (𝑖 ,
𝑗 and all images ∈ 𝑃𝑢 ) goes through a ResNet [18] (pre-trained
with ImageNet data), which outputs a visual image embedding
in R2,048. ResNet weights are fixed during CuratorNet’s training.
Then, the network has two layers with scale exponential linear
units (hereinafter, SELU [24]), with 200 neurons each, which reduce
the dimensionality of each image. Notice that these two layers work
similar to a siamese [7] or triplet loss architecture [38, 44], i.e., they
have shared weights. Each image is represented at the output of
this section of the network by a vector in R200. Then, for the case
of the images in 𝑃𝑢 , their embeddings are both averaged (average
pooling [6]) as well as max-pooled per dimension (max pooling [6])
, and next concatenated to a resultant vector in R400. Finally, three
SELU consecutive layers of 300, 200, and 200 neurons respectively
end up with an output representation for 𝑃𝑢 in R200. The final part
of the network is a ranking layer which evaluates a loss such that
Φ(𝑃𝑢 ) · Φ(𝑖) > Φ(𝑃𝑢 ) · Φ( 𝑗), where replacing in Equation (2), we
have 𝑥𝑢,𝑖 > 𝑥𝑢 𝑗 . There are several options of loss functions, but
due to good results of the cross-entropy loss in similar architectures
with shared weights [25] rather than, e.g. the hinge loss where we

3A reference CuratorNet implementation may be found at https://github.com/ialab-
puc/CuratorNet.

https://github.com/ialab-puc/CuratorNet
https://github.com/ialab-puc/CuratorNet
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need to optimize an additional margin parameter𝑚, we chose the
sigmoid cross-entropy for CuratorNet.

Notice that in this article we used a pre-trained ResNet [18] to
obtain the image visual features, but the model could use other
CNNs such as AlexNet [27], VGG [41], etc. We chose ResNet since
it has performed the best in transfer learning tasks [10, 26].

3.5 Data Sampling for Training
The original BPR article [33] suggests the creation of training triples
(𝑢, 𝑖+, 𝑗−) simply by, given a user 𝑢, randomly sampling a positive
element 𝑖+ among those consumed, as well as sampling a negative
feedback element 𝑗− among those not consumed. However, eventual
research has shown that there are more effective ways to create
these training triples [12]. In our case, we define some guidelines to
sample triples for the training set based on analyses from previous
studies indicating features which provide signals of user preference.
For instance, Messina et al. [32] showed that people are very likely
to buy several artworks with similar visual themes, as well as from
the same artist, then we used visual clusters and user’s favorite artist
to set some of these sampling guidelines.

Creating Visual Clusters. Some of the sampling guidelines
are based on visual similarity of the items, and although we have
some metadata for the images in the dataset, there is a significant
number of missing values: only 45% of the images have information
about subject (e.g., architecture, nature, travel) and 53% about style
(e.g., abstract, surrealism, pop art). For this reason, we conduct a
clustering of images based on their visual representation, in such a
way that items with visual embeddings that are too similar will not
be used to sample positive/negative pairs (𝑖+, 𝑗−). To obtain these
visual clusters, we followed the following procedure: (i) Conduct
a Principal Component Analysis to reduce the dimensionality of
images embedding vectors fromR2,048 toR200, (ii) perform k-means
clustering with 100 clusters. We conducted k-means clustering 20
times and for each time we calculated the Silhouette coefficient [34]
(an intrinsic metric of clustering quality), so we kept the clustering
resulting with the highest Silhouette value. Finally, (iii) we assign
each image the label of its respective visual cluster. Samples of our
clusters in a 2-dimensional projection map of images, built with
the UMAP method [31], can be seen in Figure 2.

Figure 2: Examples of visual clusters automatically gener-
ated to sample triples for the training set.

Guidelines for sampling triples. We generate the training
set DS as the union of multiple disjoint4 training sets, each one
generated with a different strategy in mind. These strategies and
their corresponding training sets are:

(1) Removing item from purchase basket, and predicting this
missing item.

(2) Sort items purchased sequentially, and then predict next
purchase in basket.

(3) Recommending visually similar artworks from the favorite
artists of a user.

(4) Recommending profile items from the same user profile.
(5) Create an artificial user profile of a single item purchased,

and recommending profile items given this artificially cre-
ated user profile.

(6) Create artificial profile with a single item, then recommend
visually similar items from the same artist.

Finally, the training set DS is formally defined as:

DS =

6⋃
𝑖=1

DS
𝑖 (8)

In practice, we uniformly sample about 10million training triples,
distributed uniformly among the six training sets DS

𝑖 . Likewise,
we sample about 300,000 validation triples. To avoid sampling iden-
tical triples, we hash them and compare the hashes to check for
potential collisions. Before sampling the training and validation
sets, we hide the last purchase basket of each user, using them later
on for testing.

4 EXPERIMENTS
4.1 Datasets
For our experiments we used a dataset where the user preference is
in the form of purchases over physical art (painting and pictures).
This private dataset was collected and shared by an online art store.
The dataset consists of 2, 378 users, 6, 040 items (paintings and
photographs) and 5, 336 purchases. On average, each user bought
2-3 items. One important aspect of this dataset is that paintings are
one-of-a-kind, i.e., there is a single instance of each item and once it
is purchased, is removed from the inventory. Since most of the items
in the dataset are one-of-a-kind paintings (78%) and most purchase
transactions have been made over these items (81.7%) a method
relying on collaborative filteringmodel might suffer in performance,
since user co-purchases are only possible on photographs. Another
notable aspect in the dataset is that each item has a single creator
(artist). In this dataset there are 573 artists, who have uploaded
10.54 items in average to the online art store.

The dataset5 with transaction tuples (user, item), as well as the
tuples used for testing (the last purchase of each user with at least
two purchases) are available for replicating our results as well as
for training other models. Due to copyright restrictions we cannot
share the original image files, but we share the embeddings of the
images obtained with ResNet50 [18].

4Theoretically, these training sets are not perfectly disjoint, but in practice we hash
all training triples and make sure no two training triples have the same hash. This
prevents duplicates from being added to the final training set.
5https://drive.google.com/drive/folders/1Dk7_BRNtN_IL8r64xAo6GdOYEycivtLy

https://drive.google.com/drive/folders/1Dk7_BRNtN_IL8r64xAo6GdOYEycivtLy
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4.2 Evaluation Methodology
In order to build and test the models, we split the data into train,
validation and test sets. To make sure that we could make rec-
ommendations for all cases in the test set, and thus make a fair
comparison among recommendation methods, we check that ev-
ery user considered in the test set was also present in the training
set. All baseline methods were trained on the training set with
hyperparameters tuned with the validation set.

Next, the trained models are used to report performance over
different metrics on the test set. For the dataset, the test set consists
of the last transaction from every user that purchased at least twice,
the rest of previous purchases are used for train and validation.

Metrics. To measure the results we used several metrics: AUC
(also used in [19, 20, 22]), normalized discounted cumulative gain
(nDCG@k)[21], as well as Precision@k and Recall@k [9]. Although
it might seem counter-intuitive, we calculate these metrics for a
low (k=20) as well as high values of k (𝑘 = 100). Most research on
top-k recommendation systems focuses on the very top of the rec-
ommendation list, (k=5,10,20). However, Valcarce et al. [42] showed
that top-k ranking metrics measured at higher values of k (k=100,
200) are specially robust to biases such as sparsity and popularity
biases. The sparsity bias refers to the lack of known relevance for
all the user-items pairs, while the popularity bias is the tendency
of popular items to receive more user feedback, then missing user-
items are not missing at random. We are specially interested in
preventing popularity bias since we want to recommend not only
from the artists that each user is commonly purchasing from. We
aim at promoting novelty as well as discovery of relevant art from
newcomer artists.

4.3 Baselines
The methods used in the evaluation are the following:
(1) CuratorNet: The method described in this paper. We also test

it with four regularization values for 𝜆 = {0, .01, .001, .0001}.
(2) VBPR [20]: The state-of-the-art. We used the same embedding

size as in CuratorNet (200), we optimized it until converge in
the training set and we also tested the four regularization values
for 𝜆 = {0, .01, .001, .0001}.

(3) VisRank [22, 32]: This is a simple memory-based content fil-
tering method that ranks a candidate painting 𝑖 for a user 𝑢
based on the maximum cosine similarity with some existing
item in the user profile 𝑗 ∈ 𝑃𝑢 i.e.

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖) =𝑚𝑎𝑥 𝑗 ∈𝑃𝑢𝑐𝑜𝑠𝑖𝑛𝑒 (𝑖, 𝑗) (9)

5 RESULTS AND DISCUSSION
In Table 2, we can see the results comparing all methods. As refer-
ence, at the top rows we present an oracle (perfect ranking), and
in the bottom row a random recommender. Notice that AUC for a
random recommender should be theoretically =0.5 (sorting pairs of
items given a user), so the AUC= .4973 serves as a check. In terms
of AUC, Recall@100, and Precision@100 CuratorNet with a small
regularization (𝜆 = .0001) is the top model among other methods.
We highlight the following points from these results:
• CuratorNet, with a small regularization 𝜆 = .0001, outperforms
the othermethods in fivemetrics (AUC, Precision@20, Recall@100,

Figure 3: The sampling guidelines had a positive effect on
AUC compared to random negative sampling for building
the BPR training set.

Precision@100 and nDCG@100), while it stands second in Re-
call@20 and nDCG@20 against the non-regularized version of
CuratorNet. This implies that CuratorNet overall ranks very well
at top positions, and is specially robust against sparsity and pop-
ularity bias [42]. In addition, CuratorNet seems robust to changes
in the regularization hyperparameter.

• Compared to VBPR, CuratorNet is better in all seven metrics
(AUC, Precision@20, Recall@100, Precision@100 and nDCG@100).
Notably, it is also more robust to the regularization hyperparam-
eter 𝜆 than VBPR. We think that this is explained in part due
to the characteristics of the dataset: VBPR exploits non-visual
co-occurrance patterns, but in our dataset this signal provides a
rather small preference information, since almost 80% are one-
of-a-kind items and transactions.

• VisRank presents very competitive results, specially in terms of
AUC, nDCG@20 and nDCG@100, performing better than VBPR
in this high one-of-a-kind dataset. However, CuratorNet performs
better than VisRank in all metrics. This provides evidence that
the model-based approach of CuratorNet that aggregates user
preferences into a single embedding is a better approach than
the heuristic-based scoring of VisRank.

5.1 Effect of Sampling Guidelines
We studied the effect of using our sampling guidelines for build-
ing the training set DS compared to the traditional BPR setting
where negative samples 𝑗 are sampled uniformly at random from
the set of unobserved items by the user, i.e., 𝐼 \ 𝐼+𝑢 . In the case of
CuratorNet we use all six sampling guidelines (DS

1 −DS
6), while

in VBPR we only used two sampling guidelines (DS
3 and DS

4),
since VBPR has no notion of session or purchase baskets in its
original formulation, and it has more parameters than CuratorNet
to model collaborative non-visual latent preferences. We tested
AUC in both CuratorNet and VBPR, under their best performance
with regularization parameter 𝜆, with and without our sampling
guidelines. Notice that results in Table 2 all consider the use of our
sampling guidelines. After conducting pairwise t-tests, we found
a significant improvement in CuratorNet and VBPR, as shown in
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Table 2: Results for allmethods, sorted byAUCperformance. The top five results are highlighted for eachmetric. For reference,
the bottom row presents a random recommender, while the top row presents results of a perfect Oracle.

Method 𝜆 (L2 Reg.) AUC R@20 P@20 nDCG@20 R@100 P@100 nDCG@100
Oracle – 1.0000 1.0000 .0655 1.0000 1.0000 .0131 1.0000

CuratorNet .0001 .7204 .1683 .0106 .0966 .3200 .0040 .1246
CuratorNet .001 .7177 .1566 .0094 .0895 .2937 .0037 .1160
VisRank – .7151 .1521 .0093 .0956 .2765 .0034 .1195
CuratorNet 0 .7131 .1689 .0100 .0977 .3048 .0038 .1239
CuratorNet .01 .7125 .1235 .0075 .0635 .2548 .0032 .0904
VBPR .0001 .6641 .1368 .0081 .0728 .2399 .0030 .0923
VBPR 0 .6543 .1287 .0078 .0670 .2077 .0026 .0829
VBPR .001 .6410 .0830 .0047 .0387 .1948 .0024 .0620
VBPR .01 .5489 .0101 .0005 .0039 .0506 .0006 .0118

Random – .4973 .0103 .0006 .0041 .0322 .0005 .0098

Figure 3. CuratorNet with sampling guidelines (AUC=.7204) had a
significant improvement over CuratorNet with random negative
sampling (AUC=.6602), 𝑝 = 7.7 · 10−5. Likewise, VBPR with guide-
lines (AUC=.6641) had a significant improvement compared with
VBPR with random sampling (AUC=.5899), 𝑝 = 1.6 · 10−6. With this
result, we conclude that the proposed sampling guidelines help in
selecting better triplets for more effective learning in our art image
recommendation setting.

6 CONCLUSION
In this article we have introduced CuratorNet, an art image rec-
ommender system based on neural networks. The learning model
of CuratorNet is inspired by VBPR [20], but it incorporates some
additional aspects such as layers with shared weights and it works
specially well in situations of one-of-a-kind items, i.e., items which
disappear from the inventory once consumed, making difficult to
user traditional collaborative filtering. Notice that an important
contribution of this article are the data shared, since we could not
find on the internet any other dataset of user transactions over
physical paintings. We have anonymized the user and item IDs
and we have provided ResNet visual embeddings to help other
researchers building and validating models with these data.

Our model outperforms state-of-the-art VBPR as well as other
simple but strong baselines such as VisRank [22, 32]. We also intro-
duce a series of guidelines for sampling triples for the BPR training
set, and we show significant improvements in performance of both
CuratorNet and VBPR versus traditional random sampling for neg-
ative instances.

Future Work. Among our ideas for future work, we will test
our neural architecture using end-to-end-learning, in a similar fash-
ion than [22] who used a light model called CNN-F to replace the
pre-trained AlexNet visual embeddings. Another idea we will test is
to create explanations for our recommendations based on low-level
(textures) and high level (objects) visual features which some re-
cent research are able to identify from CNNs, such as the Network
Dissection approach by Bau et al. [4]. Also, we will explore ideas
from the research on image style transfer [15, 16], which might
help us to identify styles and then use this information as context
to produce style-aware recommendations. Another interesting idea

for future work is integrating multitask learning in our framework,
such as the recently published paper on the newest Youtube recom-
mender [45]. Finally, from a methodological point-of-view, we will
test other datasets with likes rather than purchases, since we aim at
understanding how the model will behave under a different type of
user relevance feedback.
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