
Scalable Recommendation of Wikipedia Articles to Editors
Using Representation Learning

Oleksii Moskalenko
Ukrainian Catholic University

Lviv, Ukraine

Denis Parra
Pontificia Universidad Catolica de

Chile & IMFD
Santiago, Chile

Diego Saez-Trumper
Wikimedia Foundation
San Francisco, USA

ABSTRACT
Wikipedia is edited by volunteer editors around the world. Consid-
ering the large amount of existing content (e.g. over 5M articles in
English Wikipedia), deciding what to edit next can be difficult, both
for experienced users that usually have a huge backlog of articles to
prioritize, as well as for newcomers who that might need guidance
in selecting the next article to contribute. Therefore, helping edi-
tors to find relevant articles should improve their performance and
help in the retention of new editors. In this paper, we address the
problem of recommending relevant articles to editors. To do this,
we develop a scalable system on top of Graph Convolutional Net-
works and Doc2Vec, learning how to represent Wikipedia articles
and deliver personalized recommendations for editors. We test our
model on editors’ histories, predicting their most recent edits based
on their prior edits. We outperform competitive implicit-feedback
collaborative-filtering methods such as WMRF based on ALS, as
well as a traditional IR-method such as content-based filtering based
on BM25. All of the data used on this paper is publicly available,
including graph embeddings for Wikipedia articles, and we release
our code to support replication of our experiments. Moreover, we
contribute with a scalable implementation of a state-of-art graph
embedding algorithm as current ones cannot efficiently handle the
sheer size of the Wikipedia graph.

KEYWORDS
Wikipedia, RecSys, Graph Convolutional Neural Network, Repre-
sentation Learning

1 INTRODUCTION
Wikipedia is edited by hundreds of thousands of volunteers around
the world. While the level of expertise, motivations, and time ded-
icated to that task varies among users, most of them experience
challenges in deciding which articles to edit next. For example,
many experienced users have huge backlogs1 of work with a large
number of articles to improve or review. Prioritizing the articles in
this backlog, as via a personalized article ranking system, would
potentially be of great help for these editors. On the other hand,
newcomers might experience difficulties deciding what do to af-
ter their first contribution, as evidenced by the many efforts to
understand how to improve the retention of newcomers [5, 22].

While previous work on recommendations in Wikipedia has
focused on finding articles for translation [32] or content to be
added to existing articles [26], there are still important unsolved
problems: i) creating a scalable recommender system that can deal
efficiently with the large number of Wikipedia editors (over 400K

1https://en.wikipedia.org/wiki/Wikipedia:Backlog

monthly just in the English Wikipedia) and articles [12] ii) having
good coverage of articles beyond just the most popular articles, and,
iii) being able to provide good recommendations for newcomers,
facing the classical user cold-start problem [30].

To address these problems, we have created an efficient and
scalable implementation of a state-of-art convolutional graph em-
bedding algorithm [14] that is able to deal with the large Wikipedia
article graph. We combine this with a document embedding model
that allows us to learn representations for articles and editors, and
does not require retraining when new users are added in the system.
With only a few edited articles then, the system is able to produce
personalized recommendations, similar to Youtube deep recom-
mendation model [7]. We test our algorithm in English Wikipedia
(the largest one with almost 6 million articlesshowing that we can
overcame well-established content-based filtering methods as well
as collaborative filtering approaches. Moreover, we evaluate our
recommendation measuring the top-100 items, to support a robust
evaluation against popularity bias [31].

In summary, the main contributions of this paper are: (i) Intro-
duce a model which learns representations (graph and content-
based) of Wikipedia articles and makes personalized recommenda-
tions to editors; (ii) Evaluate it with a large corpus, comparing with
competitive baselines (iii) and release a scalable implementation
of GraphSage, a state-of-art graph embedding system, that in pre-
vious implementations was unable to deal with the large graph of
Wikipedia page2.

2 RELATEDWORK
There are several projects trying to solve the task of recommending
items to users at real-world scales of millions of users and mil-
lions of items. For instance, Ying et al. for Pinterest [34] created
an extension of GraphSAGE [14], a type of Graph Convolutional
Network [18] (GCN); researchers at YouTube [7] built a system
based on regular deep neural networks that jointly learns users’
and items’ representations from users’ previous history of views.
However, in both examples, the model learns in a supervised setup,
whereas we lack a sufficiently comprehensive dataset of previous
interactions because 94% of Wikipedia contributors are associated
with less that 10 interactions in last 3 years [12]. eBay’s recommen-
dation system covers a similar gap by using TF-IDF for similar item
search, which does not require training [4].

On the document representation task, we can highlight several
approaches: Doc2Vec[19] is method for obtaining content-based

2https://github.com/digitalTranshumant/WikiRecNet-ComplexRec2020

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://en.wikipedia.org/wiki/Wikipedia:Backlog
https://github.com/digitalTranshumant/WikiRecNet-ComplexRec2020

Oleksii Moskalenko, Denis Parra, and Diego Saez-Trumper

Figure 1: Flow of Candidate Generation for Wikipedia articles recommendation: Doc2Vec embeddings are trained on Wiki
Text Corpus and then passed as input into GraphSAGE model. Received articles’ representations are then used in Nearest
Neighbors Search to produce candidates

representations of paragraph or longer text in vector space. How-
ever, one main advantage of our dataset is the availability of struc-
tural knowledge [6] - i.e. links among articles that could potentially
tell more about the article beyond its content. Those links can be
represented as a graph, where nodes are articles and edges are links
between them. Thus, the task of learning document representa-
tions can be transformed into learning the representation of a node
in the graph. Node2vec [13] is a recent approach to learn such a
representation. However, its scalability is still limited [35] and the
main drawback for our use case is the necessity of full retraining
after changes in the structure of the graph. Node2vec also omit the
content part of articles (node features), which is a huge part of our
dataset.

GCN [10, 18] are a recent approach to solve many machine
learning tasks like classification or clustering of a graph’s nodes via
a message-passing architecture that uses shared filters on each pass.
It combines initial node features and structural knowledge to learn
comprehensive representations of the nodes. However, the original
GCN architecture is still not applicable to large-scale graphs because
it implies operations with a full adjacency matrix of the graph. To
tackle these limitations, GraphSAGE model was introduced [14] in
a way that only some fixed-sized sample of neighbors is utilized on
the convolutional Layer. Because of the fixed-size samples, we also
have fixed-sized weights that are generalized and could be applied
to a new, unknown part of the graph or even completely different
graph. Thus, with inductive learning, we can train the model on a
sub-graph, which means less computation resources are required,
and evaluate generalization on the full graph.

3 WIKIRECNET DESCRIPTION
Here we introduce WikiRecNet, a scalable system for providing
personalized article recommendations in Wikipedia, built on top
of GCN and Doc2Vec. The design of our solution is inspired by a
classic Information Retrieval architecture. First we represent users

by the articles that they edited, then we generate a list of candidates
from the article pool by comparing that user representation with
the article representations. Next, we sort the article candidates
accordingly to the user preferences and generate a list of top-n best
candidates recommendation.

3.1 Article and user representation
The primary challenge for our system is producing good user and
article representations. It is an especially big problem for user rep-
resentation since most of Wikipedia contributors do not fill any
additional information about themselves except their login creden-
tials 3, and around 28% of all revisions in our English Wikipedia
dataset, are done by anonymous users [12]. The only useful infor-
mation that could uniquely characterize the user is the history of
his editions. Hence, most of our efforts were dedicated to learning
articles’ representations, and then representing the user based on
the articles edited. One effective approaches to construct good user
and item representations is to learn them with recommendation su-
pervision [7, 34]. However, it is not possible to follow this approach
due to the lack of the required comprehensive-enough dataset of
previous interactions. History of users editions in Wikipedia is far
from exhaustive (88% of users of English Wikipedia have done less
than 5 major editions [12]) and too sparse, in a way that it is hard
to model user’s area of interest. Therefore, the additional challenge
is to conduct representation learning [2] in an unsupervised way
in relation to our final task.

3.2 Candidate Generation
Similar to YouTube’s deep learning recommender [7], WikiRec-
Net first generates candidates for a final personalized ranking in a
second stage. To generate candidates we first calculate representa-
tion vectors (content-based and graph-based) for all articles in our

3https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_is_anonymous

https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_is_anonymous

Scalable Recommendation of Wikipedia Articles to Editors

Figure 2: Candidate Ranking: user history along with can-
didate are passed through articles’ representation data-
base (Embedding Layer) and then through several fully-
connected layers to train in the log-regression setup.

Table 1: Performance of different algorithms for K-NN
search. All tests were conducted with English Wikipedia ar-
ticles (|𝑉 | = 5, 251, 875). Setup is measured in seconds. Secs.
req. means seconds per request.

.

Algorithm Setup Secs./req. Recall MRR
Exact search 3.91 0.81 0.224 0.0220
IVF 207.02 0.07 0.206 0.0212
HNSW 232.68 0.04 0.224 0.0220
LSH 472.31 0.15 0.215 0.0219

Table 2: Specifications of built Wikipedia Graph

Specification English Wikipedia
Amount of vertices (|𝑉 |) 5,251,875
Amount of Edges (|𝐸 |) 458,867,626
Average Degree (𝑑𝑎𝑙𝑙) 174
Median Degree (𝑑𝑎𝑙𝑙) 60
Approx. Diameter (D) 23
Amount of labeled nodes 4,652,604

dataset, a process conducted off-line which is presented as Repre-
sentation Learning in Figure 1. Then, for every user we define her
representation as an aggregation of representation vectors of cor-
responding articles that were edited by this user. Next, we conduct

Nearest Neighbors search with user representation as a query in
the articles’ representation database, a procedure we call Candidate
Generation and which is conducted online, as shown in Figure 2.

Content-based articles representation: Doc2Vec. For learning
the content-based article representation, text features are needed to
be extracted first. This can be conducted with traditional document
vector space model [29] or by using word embeddings such as
Word2vec [21] and GloVe [25] and performing an additional step of
aggregation. Another option is using directly a full text embedding
model and with that goal we use Doc2Vec [19]. There are two
distinct approaches for learning document embedding with this
model. One is Paragraph Vector Distributed Bag-of-Words model
(PV-DBOW) model, which is based on word2vec’s Continuous
Bag-of-Words approach [21] but instead of word input it accepts
paragraph vector and predicts context words for this paragraph.
In the second approach, Distributed Memory (PV-DM), which is
based on word2vec skip-gram model, the model predicts middle
word based on context and paragraph vector given as input. Later
on this paper (Section 5) we show that PV-DBOW is the best fit
for our task. We train Doc2Vec-DBOW model on the Corpus of all
Wikipedia articles in a given language. Output vectors of Doc2Vec
are being passed as input features to the GNC.

Graph-based article representation: GraphSAGE.GraphSAGE
has been used as GCN due to its ability to learn with an inductive
approach and construct embeddings for unseen nodes. During the
pre-processing of the input dataset –snapshot ofWikipedia Dataset–
we create a graph 𝐺 (𝑉 , 𝐸) where 𝑉 denotes the set of articles, and
𝐸 the set of links between them. GraphSAGE utilizes structural
knowledge from graph 𝐺 and produces new vectors that preserve
both text and structural representations. Due to the inductive nature
of GraphSAGE architecture, we do not need to retrain the model
every time after adding a new article into the database, this is very
important for applying WikiRecNet in real scenarios, where new
articles are constantly added [12].

After producing the document vector and updating the Graph𝐺
structure, we can run GraphSAGE model as is, with already trained
weights. GCN is a multi-layer network, where each layer can be
formulated as:

𝐻 (𝑙+1) = 𝜎 (�̃�− 1
2 �̃��̃�− 1

2𝐻 (𝑙)𝑊 (𝑙+1))
where �̃� = 𝐴 + 𝐼 is the adjacency matrix with self-connections
(𝐼), �̃� =

∑
𝑗 �̃�𝑖 𝑗 ,𝑊 are trainable weights and 𝐻 is the output of

previous layer or 𝐻 (0) = 𝑋 is input, 𝑋 represents node features.
An intuitive explanation of this process is that each node collects
features of its neighbors that were propagated through trainable
filters (convolutions) so called, message passing. On each step node
collects knowledge of its neighborhood and propagates its state
further on the next step. Thus, properties of 1st, 2nd, ..., nth proxim-
ity are being incorporated into node’s state along with preserving
original features of node’s community.
Optimizing candidate retrieval. In serving time, recommenda-
tion candidates will be produced by applying K-Nearest Neighbors
(K-NN) search to find the most similar articles to the user represen-
tation vector in the pre-computed database of all articles’ represen-
tations. K-NN search is one of the main parts of candidate article

Oleksii Moskalenko, Denis Parra, and Diego Saez-Trumper

generation, since its performance in terms of time and resource con-
sumption is very critical for online recommendation in a high-load
system. We conducted experiments with different optimizations for
K-NN candidate search using FAISS library [16] : Locality-Sensitive
Hashing (LSH), Inverted file with exact post-verification (IVF), Hi-
erarchical Navigable Small World graph exploration (HNSW). Our
tests showed that HNSW gives the best speed along with exactly
the same recall and MRR as exact search, so with no trade-off in
performance we achieved 20x times improvement in speed. Results
of these experiments are shown in Table 1.

3.3 Ranking of Candidate Articles
After learning content and graph-based representations forWikipedia
articles, in the second part of our system we are trying to model
user preferences based on the previous edit history of Wikipedia
contributors. With given previous editions and articles, we pro-
duce a relevant a list of candidates, ranked by its relevance for a
given user. Our model is trained on binary labels - relevant / not
relevant (logistic regression), as shown in Figure 1, but on serving
time it will produce probabilities of user interest, which are used
as a preference ranking score.

This approach is inspired by Pointwise ranking [20] and is im-
plemented in many similar recommender systems: YouTube[7],
eBay[4]. The model is shown on Figure 2 and consists of several
fully-connected layers with Batch Normalization and ReLU acti-
vation after each layer except for the last layer, where sigmoid
activation is used. The final model’s architecture was selected as
follows: 1024 ReLU -> 512 ReLU -> 256 ReLU. As input model ac-
cept a concatenated vector of user and candidate representations.

Preference score We define our preference ranking score as
the probability that a user 𝑢 finds a wikipedia article 𝑎𝑖 relevant:

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑎𝑖) = 𝑃 (𝑎𝑖 = 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 |𝑢) =
1

1 + 𝑒−Φ(𝑎𝑖 ,𝑢)
(1)

where 𝑢 represents the user, 𝑎𝑖 a candidate wikipedia article, 𝐴 is
the set of all articles to be ranked, and Φ(·) a weighted sum of the
values in the last network layer of the Candidate ranking neural
network, shown in Figure 2. We train the model with a traditional
loss for a binary logistic regression.

4 EXPERIMENTS
We worked with the English version of Wikipedia not only because
is the most popular one. In addition, is the most challenging in
terms of data processing, and if our system is able to deal with the
largest Wikipedia it would be easy to apply later in smaller projects.

4.1 Dataset
All data used has been downloaded from the official Wikimedia
Dumps [11] which are snapshots of the full Wikipedia. Some of the
objects in the dump (like articles’ links) are stored in SQL format,
others, with deeper structure (like articles’ text) are stored in XML.

First of all, for representation learning we built a graph 𝐺 (𝑉 , 𝐸),
where the set of nodes𝑉 is the set of all Wikipedia pages belonging
to article namespace4 and 𝐸 is the set of directed links between
them. The SQL dumps of page, pagelinks, and redirects tables were

4https://en.wikipedia.org/wiki/Wikipedia:Namespace

parsed to organize this data. During pre-processing stage, all links
to redirect pages5 were replaced by their actual destinations. "Cate-
gory pages", that consists only of links to other pages and do not
have their own content, were detected and filtered out. We used
Apache Spark and GraphX for parallel parsing of SQL dumps and
discovering and cleaning Article Graph respectively. The output
Graph was converted into binary format with graph-tool [24] to
achieve fast processing (see Table 2). For extracting the articles’
texts we took the latest revision6 per each article from XML dump.
We used Gensim [27] to tokenize and lemmatize text and prepare
for the Doc2vec training.

To the facilitate the evaluation in an end-to-end fashion we
reorganized the data into a revisions-per-user dataset. Only revisions
that were created after Jan. 2015 were kept in this dataset, so our
recommendations that are based on the latest snapshot of article
graph (Oct. 2018) will not recommend too many articles that did
not exists on that moment.

We found that 88% of contributors are not regular users, since
they edited fewer than 5 different articles for selected dates. We
also calculated diversity [3] of users’ contribution based on vector
representations obtained from Doc2vec. The set of contributors that
fits to our needs has mostly edited from 5 to 40 different articles,
though diversity of those articles is rather high. That is the main
cause our representations cannot be trained against this data like it
was done in previous work [7]. Unlike the work by Covington et
al. [7], our training dataset is small (around 60K users) and users’
areas of interest are very diverse.

4.2 Training
For all training experiments with GraphSAGE we generated a sam-
pled adjacency matrix based on Articles’ graph 𝐺 . The width of
the adjacency matrix was determined by our experiments, based
available memory resources as well as on graph statistics (Table 2).
We selected 128 as maximum amount of neighbors in this matrix. If
a node had more than that, then we used random subsampling. Our
GCN architecture consists of two convolutional layers. On each
convolutional step we picked a random sample of 25 neighbors
from this adjacency matrix. This 25-neighbors sample is being re-
sampled on each new batch. For better generalization we used a
batch size of 512, since experiments with dropout between convo-
lutional layers led to no improvement in generalization. We set the
size for all output vectors to 512 considering a balance between
better resolution and available memory.

Document representations from Doc2Vec-DBOW, trained with
vector size 300 and window size 8, were passed as initial node states
and graph edges played the role of labels when the model was
trying to predict those edges. We utilized max-margin loss [34],
as target for training GraphSAGE in link-prediction setup. Model
parameters were tuned with the Adam optimizer[17].

𝐽 (𝑧𝑢𝑧𝑖) = 𝐸𝑣𝑛∼𝑃𝑛 (𝑢)𝑚𝑎𝑥{0, 𝑧𝑢 · 𝑧𝑣𝑢 − 𝑧𝑢 · 𝑧𝑖 + Δ} (2)
For training the ranking model, a dataset from users’ history

was constructed. As input this model takes 5 articles edited by a
user (representing users’ preferences) and 1 candidate that might

5https://en.wikipedia.org/wiki/Wikipedia:Redirect
6Article’s revision is a specific version of article’s content after each modification

Scalable Recommendation of Wikipedia Articles to Editors

interest the user. The model tries to predict the probability of rele-
vance of this candidate to the current user. Those 6 input articles
are passed through an Embedding Layer populated with represen-
tations received from GraphSAGE and then concatenated into one
vector. We chose positive candidates from actual user history and
generated negative candidates with kNN search on constructed
articles’ representations. Logistic (binary cross-entropy) regression
with class-weights (due to high class imbalance) was used as loss
function.

4.3 Evaluation
To prepare the evaluation dataset, we subsampled windows of size
10 from user’s history (from users that were not previously used
for training or testing the Deep Ranking model). Our assumption if
that the first 5 articles denoted users’ area of interest. To compute a
single user vector we took element-wise average of representations
from the first 5 articles (GraphSAGE representations). We were
trying to predict the rest 5. Algorithm can be expressed as follows: (i)
take first 5 articles per user. Calculate average of their embeddings
vectors, output this as the user vector representation, (ii) generate
candidates by nearest neighbors search of user representation, (iii)
sort candidates according to ranking algorithm and select the top
𝐾 . In our evaluation we compare two ranking techniques: sort by
cosine similarity, and sort by probability from Deep Ranking model,
and (iv) compare Top-K recommendations with the 5 articles in the
test set (from second half of the sampled window).

To measure the results we used several metrics: mean average
precision (MAP), normalized discounted cumulative gain (nDCG)[1]
and Recall@k [8]. We calculate these metrics at high k values,
𝑘 = 50 an 𝑘 = 100. Unlike traditional research on top-k recommen-
dation systems usually focusing on small k values (k=10,20,30), we
are specially interested in preventing popularity bias, i.e., having
WikiRecNet biased to recommend mostly popular items. Valcarce et
al. [31] showed recently that usual top-k ranking metrics measured
at higher values of k (50, 100) are specially robust to popularity
bias, and that is why we use them here.

.

5 RESULTS
Results of the evaluation are presented in Table 3. We first describe
the competing methods:

Baselines. We used two well established methods. The first one
is BM25[28], a probabilistic method used on information retrieval
but also applied for content-based filtering in the area of recommen-
dation [23]. A second baseline is implicit feedback collaborative
filtering optimized with Alternative Least Squares (ALS) [15].

K-NN recommender. In addition, we implemented a simple
K-NN recommender where the Wikipedia articles are represented
by the Doc2vec vector embeddings. Each user 𝑢 is represented by
the articles she has edited, and we test two forms of aggregation to
represent the user model: merging the user-edited articles (merge)
and calculating the mean at each dimension of the document (mean-
pool). We rank recommended articles by cosine similarity.

Aggregations. Finally,WikiRecNet is presented in 5 versions by
varying the type of aggregation of articles to represent the user

model (merge, mean-pool, max-pool), as well as the method for
ranking (cosine similarity and Deep-Rank).

The results in Table 3 show that WikiRecNet, using merge aggre-
gation and Deep-Rank ranking, outperforms the other methods in
all metrics. We highlight the following the aspects in the evaluation:

• ALS implicit feedback collaborative filtering performs the
worst among all methods. This result must be due to the
extreme high sparsity of the dataset.

• BM25, despite being a simple and traditional content-based
filtering method, performs well and remains very competi-
tive.

• The simple K-NN based on Doc2Vec representation per-
forms better than ALS, and mean-pool reports better results
than merge but only at higher ranking positions (MAP@50,
nDCG@50, Recall@50).

• Among the WikiRecNet variations, the max-pool aggrega-
tion seems to be the least helpful. In terms of nDCG@50 and
nDCG@100 (the metric most robust to popularity bias [31]),
merge aggregation seems more effective than mean-pool,
and then the combination with DeepRank produce the best
performance, with a 100% increase compared to the Doc2vec
mean-pool reference method.

6 CONCLUSION
In this article we have introducedWikiRecNet, a neural-based model
which aims at recommending Wikipedia articles to editors, in order
to help them dealing with the sheer volume of potential articles that
might need their attention. Our approach uses representation learn-
ing, i.e., finding alternative ways to represent the Wikipedia articles
in order to produce a useful recommendation without requiring
more information than the previous articles edited by targeted
users. For this purpose, we used Doc2Vec [19] for a content-based
representation and GraphSage [14], a graph convolutional network,
for a graph-based representation.

WikiRecNet architecture is composed of two networks, a candi-
date generation network and a ranking network, and our imple-
mentation is able to deal with larges volumes of data, improving
existing implementations that were not capable to work in such
scenarios. Also, our approach does not need to be retrained when
new items are added, facilitating its application in dynamic environ-
ments such as Wikipedia. To best of our knowledge, this is the first
recommender system especially designed for Wikipedia editors
that takes in account such applications constrains, and therefore,
can be applied in real world scenarios.

In order to contribute to the community, we provide our code
and the graph embedding of each Wikipedia page used in this
experiment7 available in a public repository, as well as a working
demo that can be tested by theWikipedia editors community8. With
respect to text embeddings, there have been important progresses
in the latest years, so another idea for future work will be testing
models like BERT [9] or XLNet [33].

7Embeddings in other languages would be also available under request.
8https://github.com/digitalTranshumant/WikiRecNet-ComplexRec2020

https://github.com/digitalTranshumant/WikiRecNet-ComplexRec2020

Oleksii Moskalenko, Denis Parra, and Diego Saez-Trumper

Table 3: Offline evaluation of generated recommendations on the task of predicting next 5 articles edited by user with per-
centage improvement over content-based model Doc2Vec (mean-pool) with cosine similarity.

K=50 K=100
Model Aggregate Rank MAP nDCG Recall MAP nDCG Recall
WikiRecNet mean cosine 0.0221 0.1361 0.0846 0.0238 (+78%) 0.1468 (+66%) 0.1179 (+99%)

mean deep-rank 0.0228 0.1363 0.0841 0.0243 (+82%) 0.1493 (+70%) 0.1134 (+92%)
max cosine 0.0192 0.1196 0.0672 0.0206 (+54 %) 0.1299 (+47%) 0.0923 (+56%)
merge cosine 0.0208 0.1412 0.0825 0.0227 (+70%) 0.1538 (+75%) 0.1175 (+99%)
merge deep-rank 0.0262 0.1625 0.0935 0.0282 (+111%) 0.1760 (+100%) 0.1302 (+120%)

Doc2Vec merge cosine 0.0085 0.0805 0.0438 0.0092 0.0883 0.0600
mean cosine 0.0126 0.0821 0.0436 0.0133 0.0880 0.0590

BM25 0.0251 0.1602 0.0921 0.0273 0.1710 0.1290
ALS MF 0.0027 0.0163 0.044 0.0063 0.0204 0.0609

7 ACKNOWLEDGMENTS
The author Denis Parra has been funded by theMillennium Institute
for Foundational Research on Data (IMFD) and by the Chilean
research agency ANID, FONDECYT grant 1191791.

REFERENCES
[1] Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. 2010. Group Recom-

mendations with Rank Aggregation and Collaborative Filtering. In Proceedings
of the Fourth ACM Conference on Recommender Systems (RecSys ’10). ACM, New
York, NY, USA, 119–126. https://doi.org/10.1145/1864708.1864733

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[3] J Bobadilla, Francisco Serradilla, and J Bernal. 2010. A new collaborative filtering
metric that improves the behavior of recommender systems. Knowledge-Based
Systems 23 (08 2010), 520–528. https://doi.org/10.1016/j.knosys.2010.03.009

[4] Yuri M. Brovman, Marie Jacob, Natraj Srinivasan, Stephen Neola, Daniel Galron,
Ryan Snyder, and Paul Wang. 2016. Optimizing Similar Item Recommendations
in a Semi-structured Marketplace to Maximize Conversion. In Proceedings of the
10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY,
USA, 199–202. https://doi.org/10.1145/2959100.2959166

[5] Boreum Choi, Kira Alexander, Robert E Kraut, and John M Levine. 2010. So-
cialization tactics in wikipedia and their effects. In Proceedings of the 2010 ACM
conference on Computer supported cooperative work. ACM, 107–116.

[6] Cristian Consonni, David Laniado, and AlbertoMontresor. 2019. WikiLinkGraphs:
A complete, longitudinal and multi-language dataset of the Wikipedia link net-
works. arXiv preprint arXiv:1902.04298 (2019).

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys ’16). ACM, New York, NY, USA, 191–198. https:
//doi.org/10.1145/2959100.2959190

[8] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In Proceedings of the
fourth ACM conference on Recommender systems. ACM, 39–46.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015.
Convolutional Networks on Graphs for Learning Molecular Finger-
prints. In Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett
(Eds.). Curran Associates, Inc., 2224–2232. http://papers.nips.cc/paper/
5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.
pdf

[11] Wikimedia Foundation. 2018. Wikimedia Downloads. https://dumps.wikimedia.
org [Online; accessed 14. Oct. 2019].

[12] Wikimedia Foundation. 2019. Wikimedia Statistics - All wikis. https://stats.
wikimedia.org/v2/#/all-projects [Online; accessed 13. Oct. 2019].

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning
for Networks. CoRR abs/1607.00653 (2016). http://dblp.uni-trier.de/db/journals/
corr/corr1607.html#GroverL16

[14] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NIPS.

[15] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In In IEEE International Conference on Data Mining
(ICDM 2008. 263–272.

[16] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochas-
tic Optimization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
http://arxiv.org/abs/1412.6980

[18] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. CoRR abs/1609.02907 (2016).

[19] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. CoRR abs/1405.4053 (2014). arXiv:1405.4053 http://arxiv.org/
abs/1405.4053

[20] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (March 2009), 225–331. https://doi.org/10.1561/1500000016

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

[22] Jonathan T Morgan, Siko Bouterse, Heather Walls, and Sarah Stierch. 2013. Tea
and sympathy: crafting positive new user experiences on wikipedia. In Pro-
ceedings of the 2013 conference on Computer supported cooperative work. ACM,
839–848.

[23] Denis Parra and Peter Brusilovsky. 2009. Collaborative filtering for social tagging
systems: an experiment with CiteULike. In Proceedings of the third ACM conference
on Recommender systems. ACM, 237–240.

[24] Tiago P. Peixoto. 2014. The graph-tool python library. figshare (2014). https:
//doi.org/10.6084/m9.figshare.1164194

[25] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[26] Tiziano Piccardi, Michele Catasta, Leila Zia, and Robert West. 2018. Struc-
turing Wikipedia Articles with Section Recommendations. arXiv preprint
arXiv:1804.05995 (2018).

[27] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50. http://is.muni.cz/publication/
884893/en.

[28] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389.
https://doi.org/10.1561/1500000019

[29] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[30] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock.
2002. Methods and metrics for cold-start recommendations. In Proceedings of the
25th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 253–260.

[31] Daniel Valcarce, Alejandro Bellogín, Javier Parapar, and Pablo Castells. 2018. On
the robustness and discriminative power of information retrieval metrics for top-
N recommendation. In Proceedings of the 12th ACM Conference on Recommender
Systems. ACM, 260–268.

[32] Ellery Wulczyn, Robert West, Leila Zia, and Jure Leskovec. 2016. Growing
wikipedia across languages via recommendation. In Proceedings of the 25th Inter-
national Conference on World Wide Web. International World Wide Web Confer-
ences Steering Committee, 975–985.

https://doi.org/10.1145/1864708.1864733
https://doi.org/10.1016/j.knosys.2010.03.009
https://doi.org/10.1145/2959100.2959166
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf
http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf
http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf
https://dumps.wikimedia.org
https://dumps.wikimedia.org
https://stats.wikimedia.org/v2/#/all-projects
https://stats.wikimedia.org/v2/#/all-projects
http://dblp.uni-trier.de/db/journals/corr/corr1607.html#GroverL16
http://dblp.uni-trier.de/db/journals/corr/corr1607.html#GroverL16
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://doi.org/10.1561/1500000016
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1561/1500000019

Scalable Recommendation of Wikipedia Articles to Editors

[33] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv preprint arXiv:1906.08237 (2019).

[34] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In KDD.
[35] Dongyan Zhou, Songjie Niu, and Shimin Chen. 2018. Efficient GraphComputation

for Node2Vec. CoRR abs/1805.00280 (2018). http://dblp.uni-trier.de/db/journals/
corr/corr1805.html#abs-1805-00280

http://dblp.uni-trier.de/db/journals/corr/corr1805.html#abs-1805-00280
http://dblp.uni-trier.de/db/journals/corr/corr1805.html#abs-1805-00280

	Abstract
	1 Introduction
	2 Related work
	3 WikiRecNet Description
	3.1 Article and user representation
	3.2 Candidate Generation
	3.3 Ranking of Candidate Articles

	4 Experiments
	4.1 Dataset
	4.2 Training
	4.3 Evaluation

	5 Results
	6 Conclusion
	7 Acknowledgments
	References

