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ABSTRACT
Personalization has gained a lot of traction in the e-commerce do-
main since there is ample evidence for short-term and long-term
benefits of understanding user preferences and ensuring user satis-
faction. However, effectively personalizing recommendations is a
challenging task, especially at scale. Price is often a key considera-
tion for purchases, and user behavior varies widely depending on
demographic and psychological factors. While difficult to model,
this is an important signal to consider for user-item recommenda-
tion. In this paper, we focus on personalizing and improving the
relevance of item recommendations for e-commerce users by lever-
aging price as an essential input. More concretely, we segregate
items into price bands indicating how expensive they are, infer user
affinity to price bands based on historical behavior and use fea-
tures derived from this knowledge to re-rank items in a real-world
recommendation scenario. We experiment with various statistical
and machine learning methods to determine item price bands, user
price affinities and item price similarities, and demonstrate impact
on the recommendation quality for millions of users and items.

1 INTRODUCTION
Recommender systems are ubiquitous on websites today. Recom-
mendation algorithms can be based on item-item interactions or
user-item feedback. In recent times, websites are increasingly fo-
cusing on providing an experience tailored to their users [35] [10]
[36] with personalization at the segment or individual level. Un-
derstanding user preferences and recommending relevant items to
them accordingly has been shown to improve user satisfaction and
conversion rates, which is a win-win situation [4] [5]. While it is
essential, scaling the personalization of recommendations anchored
on combinations of users and items is very challenging, especially
in the e-commerce domain where millions of users can potentially
interact with millions of items.

For most users, price is often a key factor for making purchases
[14] [8] [34]. Users make price-value trade-offs when they purchase
products, and their behavior can vary widely depending on demo-
graphic factors such as their salary or location and psychological
factors such as money consciousness or additional interest in cer-
tain types of products. Let us consider two users. The first user is a
sound engineer and is looking to purchase high-quality headphones
for use at work. Since this user needs to discern any imperfections,
they may be looking to purchase expensive headphones. Another
user may decide to purchase headphones to listen to podcasts. As
long as this user can understand the podcast, sound quality is not
an issue and they can buy lower-priced headphones. To effectively

personalize their shopping journey, understanding that the first
customer is looking for higher priced headphones and the second
customer is looking for lower priced ones will help recommend
products they are looking for.

However, defining what constitutes a high-priced or low-priced
item is a difficult task. In the e-commerce domain, products, of
course, have price associated with them. But, we do not know
whether a given price is considered expensive or inexpensive for
a given type of product, for example, a light bulb and a laptop.
$100 may be a bargain for the laptop, but the same price-tag for
the light bulb might make it very expensive. Similarly, we need
to understand item prices for each product type and categorize
them into different price bands (e.g. low vs. high) based on this.
Subsequently, we can start understanding which price bands users
are likely to purchase from for different product types.

To summarize, using price to personalize item recommendation
is challenging because user price preferences need to be implicitly
inferred and vary based on the type of product. Additionally, item
prices are not sufficient to determine if a product is considered
expensive versus not, and need to be standardized such that they
can be compared across different types of products. In this paper,
we aim to model user price affinity and item price similarity, and
utilize them as input signals along with item-item relevance scores
to personalize and improve the quality of item recommendations
for e-commerce users. We achieve this using the following:

• Unsupervised methods to divide items into price bands indi-
cating their degree of expensiveness

• Supervised methods to compute user affinity to different
price bands based on their historical interactions

• Item and user price-related features to re-rank items in an
actual user-item recommendation setting

This is done at the Product Type (PT) level which is themost granular
level of the product taxonomy available in the Walmart product
catalog. We use a large e-commerce dataset, and experiment with
multiple statistical and machine learning methods to determine
item price bands, user price affinities and item price similarities. We
quantitatively show the positive impact on recommendation quality
upon including price-related features in the re-ranking algorithm.

2 RELATEDWORK
There has been extensive research on recommender systems and
personalization. Many research efforts have been focused on collab-
orative filtering-based techniques. Traditional matrix factorization
(MF) models [24] and variants [17] [31], incorporating implicit feed-
back, temporal effects and confidence levels, have proved superior
to the classic nearest neighbor approaches in recommending items
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[33]. Factorization machines [30] have also been used for recom-
mendation to overcome feature sparsity issues. Emerging deep
learning based solutions [6] [15] [13] have also shown promising
results for recommendation. Item embeddings can be used to com-
pute item-item similarity and recommend items accordingly [37]
[11]. For modeling recommendations based on short session-based
data, a sequential Recurrent Neural Network [28] (RNN)-based ap-
proach can be used to predict the next item [16]. More recently,
causal embeddings for recommendation [3] have shown significant
improvements over state-of-the-art factorization methods.

Price is an important factor to consider for users while making
an online purchase. In [34], a conceptual framework is developed
to explain the effects of the online medium on customer price
sensitivity. User price sensitivity and price thresholds are discussed
in [14]. Traditional and online supermarkets are compared in terms
of user behavior with respect to brand, price and other search
attributes in [8], and price sensitivity is found to be higher online.
There are also other studies about impact of advertising [20] and
brand credibility [9] on price sensitivity. In [38], the potential effect
of the consumption occasion (functional vs. hedonic), social context
and household income on users’ price sensitivity is analyzed. There
is substantial additional literature on consumer price sensitivity.

However, price has received relatively less attention as an input
signal for recommendation. Price is used as a feature in [1] for
personalization in the e-commerce domain by taking the ratio of
the price of the current item to the average price of previously
clicked items. There is also a brief mention of how price can affect
user’s affinity towards an item in [17]. Authors in [18] perform
data analysis of logs to investigate what makes recommendations
effective in practice, and include some factors based on “price levels”
per product category. However, methods for determining these price
levels are not discussed and user price affinity is incorporated as
an average of recent price levels (not per category). Their focus is
on the impact of popularity, discounts, reminders and recency on
user click behavior. In [12], Willingness To Pay (WTP) distributions
per user and product are modeled, and this is used with discount
indication and seller reputation in a context-aware recommendation
model to improve recommendation quality. More recently, [40]
model the transitive relationship between user-to-item and item-
to-price using Graph Convolution Networks [22] (GCN) to make
the learned user representations price-aware. They incorporate
prices and categories as nodes along with users and items in a
heterogeneous graph. They also consider price as a categorical
variable and discretize the price value into separate levels based on
price ranges but do not experiment with different methods for this.

In our work, we explore several methods to compute item price
bands and explicitly model user price affinity for various types of
products, such that these input signals can be leveraged generally
for use cases such as recommendation and search. We demonstrate
results for user-item and item-item price-related features obtained
from different model variations used together with an item-item
relevance score for personalizing item-anchored recommendations.

3 METHODOLOGY
Our goal is to use past item interaction data (such as clicks and add
to carts) for a given user and predict their affinity for a particular

price band, and eventually incorporate this price understanding into
recommendations. To achieve this, items are clustered into price
bands at the product type level (Section 3.1), and then user activity
patterns are learnt with respect to these item price bands to predict
the probability that the user will purchase an item from a particular
price band versus others for that product type. These predicted
user-item price band affinity scores (Section 3.2) and item-item
price band similarity scores (Section 3.3) are used as features along
with relevance scores to re-rank item-anchored recommendations
(Section 3.4) for personalization using price understanding.

3.1 Item Price Bands
Item prices vary a lot, from less than 10 dollars for a USB drive to
thousands of dollars for a QLED television. However, to decide if
an item is expensive or not, just the absolute value of price is insuf-
ficient. It is also important to take into consideration the product
type since a price of $100 might be low for televisions, but high for
a USB drive. Thus, we need to create representations for prices of
items for each product type such that they are directly comparable
across different items. So, we assign each item to one out of 𝑛 bands
using unsupervised methods since labels are unavailable.

3.1.1 Statistical Methods. We first explore statistical methods us-
ing item prices for each product type.

• Range-Based: For example, say television prices vary from
$100 to $5100, and we decide to create 3 price bands with
price range ratios 3:5:2. Then one unit of the range becomes
($5100 - $100)/(3+5+2) = $500, and the lowest price band
extends from $100 to $100 + 3*$500 (= $1600), the middle
from $1600 to $2600 + 5*$500 (= $4100) and the highest from
$4100 to $4100 + 2*$500 (= $5100).

• Percentile-Based: For example, say, in the above situation, we
decide to create 3 price bands with percentiles 30%, 50% and
20%. If there are 200 televisions on our item catalog with 60
TVs having price less than $500, 100 TVs with prices between
$500 - $2500 and 40 TVs with prices greater than $2500, then
those delineate the price bands.

Splitting items into equal bins based on range or percentiles did
not work well in practice due to skew in item price distributions
and transaction volumes. Creating unequal bins needs extensive
manual tuning.

3.1.2 Clustering. Next, we use some common clustering methods
to automatically put items from each product type into 𝑛 clusters
using the item price values.

• K-Means [26]: Each item is assigned to the cluster for which
the mean price value is closest to the item price.

• Gaussian Mixture Model (GMM) [32]: We assume that all the
price values are generated from a mixture of a finite number
of normal distributions with unknown means and variances
(estimated using Expectation Maximization). We pick the
highest probability cluster as the item’s price band.

3.1.3 Transaction Balancing. Another method is based on com-
puting cumulative transaction volumes after arranging items in
increasing order of their price value, and determining price band
boundaries such that each price band accounts for an equal volume
of item transactions. This technique was devised to mitigate data
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imbalance in the subsequent step of using price bands to compute
price affinities based on user activity.

3.2 User Price Affinity
After assigning price bands to items at the product type level, the
next step is to determine the user price affinity per product type.
In other words, given a product type, we want to predict the prob-
ability that the user will purchase an item from a certain price
band versus others. For example, say we are considering two price
bands, “expensive” and “cheap”. Sam might have affinities 0.8 and
0.2 towards expensive and cheap fitness trackers, but 0.3 and 0.7
towards expensive and cheap bed frames. This indicates that she
likes buying expensive fitness trackers but inexpensive bed frames.
To predict this, we use historical data to train various machine
learning models, using 6 months’ data for generating features and
the next 1 month for labels. The baseline prediction is based on the
transactions in 6 months.

3.2.1 Baseline. For each user, per product type, we take the number
of transactions (trx) in each price band (𝑝𝑏𝑖 ) and normalize it by
summing transactions across all price bands for that product type
(𝑝𝑡 𝑗 ) and user to obtain affinity scores.

user_price_affinity(𝑝𝑏𝑖 , 𝑝𝑡 𝑗 ) =
# of trx in 𝑝𝑏𝑖 , 𝑝𝑡 𝑗

# of trx in 𝑝𝑡 𝑗
(1)

3.2.2 Machine Learning. We consider user price affinity prediction
as a multi-class classification (supervised machine learning) prob-
lem with number of classes equal to the number of price bands (𝑛).
For each user and product type, we use features such as number
of transactions, add to carts and views of items per price band per
month (for 6 months) by that user for that product type. We did not
have ground truth data for labels. As a proxy, we use the price band
which has the maximum number of transactions by the user for
that product type, as the label. The aggregation of data for labels
is done using the month following the last month used for feature
generation. Thus, each data point is used to predict price affinities
of a specific user towards different price bands in a particular prod-
uct type. Subsequently, we use these features and labels to train
and test multi-class Logistic Regression (LR) [23] and Decision Tree
(DT) [25] models.
In LR, for each input data point (feature vector 𝑥 and label 𝑦), the
model learns weights (weight vector𝑤 ) and outputs a probability
distribution over the price bands (𝑝𝑏) for a given user and product
type (𝑝𝑡 ) which represents their affinity.

user_price_affinity(𝑝𝑏𝑖 , 𝑝𝑡 𝑗 ) =
exp𝑤𝑇

𝑖
𝑥∑𝑛

𝑘=1 exp𝑤
𝑇
𝑘
𝑥

(2)

We use two variants - unweighted (LR-unbal) which is the vanilla
model and weighted (LR-bal) based on class imbalance, where
each data point is assigned a weight while contributing to the
loss/gradient computation. The weight balancing heuristic used
[21] is inversely proportional to class frequencies: n_samples

n_classes ∗ count_y ,
where 𝑦 is the class label.
In DT, data is continuously split based on a certain feature at each
step. We also consider random forests and fit multiple decision trees

on a number of smaller samples from the data. The final output is
the average of different tree outputs.

3.3 Item Price Similarity
Another input is the similarity between price bands for items across
product types based on user transaction patterns. For example,
users who purchase medium-priced televisions might be likely to
purchase high-priced sound bars and these (𝑝𝑡 , 𝑝𝑏) pairs are similar.
This is also used as a feature while re-ranking to capture the item-
item price similarity.
Pearson Correlation [2]: We compute the Pearson correlation (𝜌)
between observed transactions for each user for different (product
type, price band) pairs (say 𝑝𝑡𝑎, 𝑝𝑏𝑖 and 𝑝𝑡𝑏 , 𝑝𝑏 𝑗 ), and these are used
as the price similarity scores.

price2price = 𝜌𝑋,𝑌 =
cov(𝑋,𝑌 )
𝜎𝑋 ∗ 𝜎𝑌

(3)

Matrix Factorization [24]: We learn latent representations for (prod-
uct type, price band) pairs by creating a user-(product type, price
band) transaction matrix and factorizing it.𝑈𝑚×𝑑 denotes the user
representation (𝑚 users) and𝑉𝑛×𝑑 denotes the (product type, price
band) representation (𝑛 pairs). Embeddings are learned such that
𝑈𝑉𝑇 is a good approximation of transaction matrix 𝑇 . Cosine sim-
ilarity between these low-dimensional vectors are used as price
similarity scores.

price2price = 𝑐𝑜𝑠 (𝜃 ) = 𝑢 · 𝑣
| |𝑢 | | | |𝑣 | | (4)

3.4 Re-Ranking
To tie everything up, we have a re-ranker engine that is capable of
incorporating user price understanding and item price similarity
into any item recommendation set such as Viewed also Viewed
and Bought also Bought. We use an inference function to combine
features related to user preference and item relevance, and predict
user-item interactions:

𝑃 (𝑢 interacts with 𝑟 | 𝑢 just interacted with 𝑖) = 𝑓 (𝑔(𝑢, 𝑟 ), ℎ(𝑖, 𝑟 ))
(5)

where 𝑢 is the user, 𝑖 is the anchor item, 𝑟 is the recommended item,
𝑔(𝑢, 𝑟 ) represents 𝑢’s preference for 𝑟 , and ℎ(𝑖, 𝑟 ) represents item
relevance between 𝑖 and 𝑟 . Currently, the inference function we
use is simple logistic regression where user preference score and
relevance score are combined linearly. The weights can be learned
either at the global level (i.e. same weights across all product types)
or at the product type level. There are more details in Section 4.4.

4 EXPERIMENTS AND RESULTS
We use a real-world proprietary e-commerce dataset from wal-
mart.com for demonstrating results. We determine price bands for
few million items and predict price affinity scores for millions of
users across around 6000 product types.

4.1 Item Price Bands
We explored the trade-off between granularity for more useful user
affinity scores and data sparsity issues in user-price band interac-
tions as the number of price bands per product type increases, and
decided to use 𝑛 = 5 item price bands for our experiments. We
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evaluate the discovered item price bands qualitatively, since ground
truth labels are unavailable. One way is to look at how price ranges
for different products were being split based on different methods
described in Section 3.1. Of these, (as shown in Figure 1) we pick
k-means and transaction balancing (transac-bal) as methods to fur-
ther evaluate in the subsequent steps of predicting user affinities
and using these to re-rank recommendations. We observe that clus-
tering methods such as k-means put fewer very high priced items
into the higher price bands, whereas trying to equalize number of
transactions puts fewer items into the lower price bands, which is
expected since less expensive items usually have more transactions.
We also randomly sample items and inspect the quality of price
bands. An example of televisions from 5 price bands (v low-0, low-1,
medium-2, high-3 and v high-4) is shown in Figure 2.

4.2 User Price Affinity
We hold out 20% of data to test the trained user price affinity mod-
els described in Section 3.2. We use precision, recall and F1 score,
which are common multi-class classification evaluation metrics, to
assess the performance of different models. Since the classes in the
data are not balanced, accuracy is not a good metric. Additionally,
we also use the Mean Reciprocal Rank (MRR) to check whether
even if the max transaction price band (ground truth label) does
not get the maximum price affinity score, it gets a reasonably low
(better) rank. Results for different models when price bands are
determined using k-means and transac-bal are shown in Table 1 and
Table 2 respectively. Random forests did not give much improve-
ment over simple decision trees, so we have omitted those results.
For the baseline, we obtain an overall MRR of around 0.51 for k-
means and around 0.37 for transac-bal. All the machine learning
methods performed better than the baseline. For logistic regression,
we explored hyperparameters aggregation depth: [2,4], maximum
iterations: [100,1000], regularization: [0,0.01] and elastic net weights:
[0.4,0.8], and were able to obtain an overall MRR of around 0.85
for k-means and around 0.79 for transac-bal. For decision trees, we
explored hyperparameters impurity: ["entropy", "gini"], maximum
depth: [10, 20, 30] and maximum bins: [16, 32, 64], and were able to
obtain an overall MRR of around 0.85 for k-means and around 0.76
for transac-bal. We observe that weighted / class-balanced logistic
regression performs the best for both item price banding strategies,
but performance varies across different price bands as seen in Fig-
ure 3, with metrics falling for higher price bands in the k-means
case and remaining at similar levels in the transac-bal case.

4.3 Item Price Similarity
Figure 4 shows an example of results obtained for product type,
price band pairs which are most similar to Medium-2 priced Bed
Sheets. We leave quantitative evaluation of methods to the down-
stream re-ranking application.

4.4 Re-Ranking
We show how price understanding models perform when imple-
mented on the "customers who viewed also viewed" (VAV) appli-
cation (example shown in Figure 5). We take few million anchor
items from VAV and limit to 𝑁 <= 30 recommendations for each
item ranked by a "relevance" score. This relevance score is based

on item-item features such as number of co-views, title match and
popularity. The price understanding model offers two additional
features for re-ranking on top of the relevance score: user price
affinity score and price2price similarity score.

We first test out various methods used to develop user price
affinity. We start with two main methods for item price banding:
k-means and transaction balancing. For each item price banding
model we have four variations for user price affinity: baseline,
logistic regression (unbalanced), logistic regression (balanced) and
decision trees. This gives us a total of eight versions of user price
affinity scores. The inference function for re-ranking is balanced
logistic regression:

𝑦 = 𝑤0 +𝑤1 × relevance +𝑤2 × user_price_affinity (6)

The weights in the equation above are trained at the global level
(as opposed to at each product-type level) and are optimized for
items that are co-viewed within each user session. To evaluate per-
formance, we use common ranking evaluation metrics Normalized
Discounted Cumulative Gain (NDCG) [19], Mean Hit Rate (MHR),
Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP)
[27] [7]. The offline evaluation results are shown in Table 4. We
limit the evaluation metrics to be based on the top 5 recommen-
dations. We observe that all the models outperform the relevance
only model (no re-ranking). The best performing model uses trans-
action balancing for price banding and applies weighted logistic
regression (balanced) to derive user price affinity scores.

We now expand on the previously established best performing
model and supplement it with item price similarity information
between the anchor item and the recommended item. We have two
variations of item similarity scores to compare: Pearson correla-
tion and matrix factorization. The inference function now has an
additional feature, as follows:

𝑦 = 𝑤0 +𝑤1 × relevance
+𝑤2 × user_price_affinity
+𝑤3 × price2price_similarity

(7)

Again we adopt a balanced logistic regression model to train the
above objective function and learn the weights at the global level.
The results are shown in Table 5. We observe an even greater
boost in performance by adding the price2price feature. Overall, the
best performing model uses price2price scores derived from matrix
factorization. Compared to the relevance only model, this method
shows 0.64% improvement in NDCG, 1% improvement in MHR, and
0.93% improvement in MAP. The improvements in NDCG, MHR
and MAP@5 are statistically significant at 5% level in our offline
evaluation. Though the MRR is slightly lower, the difference is
not statistically significant. Also, since 5-6 recommended items are
typically shown on the first pane of the module, metrics such as
MHR become more important.

We further study the weights, 𝑤1 𝑤2 𝑤3 from the inference
function to gauge feature importance. After adjusting for feature
variance (standard scaling of features), the ratio among the weights
𝑤1 : 𝑤2 : 𝑤3 = 33:3:1. This tells us that the relevance score from
the VAV model contributes the most even during re-ranking, but
price-related features also add value. The user price affinity feature
has greater weight than the price2price feature.
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Figure 1: Different price bands obtained for k-means and transac-bal for product type Televisions

Figure 2: An example of items in different price bands obtained for product type Televisions

Method Pr Band Prec Rec F1 MRR

Baseline

V Low 0.51 0.56 0.53 0.77
Low 0.36 0.33 0.34 0.64

Medium 0.11 0.09 0.10 0.40
High 0.02 0.02 0.02 0.26
V High 0.002 0.001 0.001 0.20

LR-unbal

V Low 0.80 0.87 0.83 0.92
Low 0.72 0.71 0.71 0.85

Medium 0.67 0.52 0.59 0.71
High 0.57 0.21 0.31 0.46
V High 0.87 0.02 0.05 0.24

LR-bal

V Low 0.84 0.83 0.83 0.88
Low 0.73 0.70 0.71 0.83

Medium 0.59 0.63 0.61 0.78
High 0.46 0.60 0.52 0.74
V High 0.11 0.37 0.18 0.58

DT

V Low 0.83 0.81 0.82 0.89
Low 0.65 0.75 0.69 0.87

Medium 0.61 0.46 0.53 0.68
High 0.54 0.35 0.43 0.52
V High 0.05 0.01 0.01 0.21

Table 1: k-means to determine Item Price Bands

Method Pr Band Prec Rec F1 MRR

Baseline

V Low 0.06 0.07 0.06 0.48
Low 0.11 0.12 0.11 0.41

Medium 0.16 0.17 0.17 0.40
High 0.22 0.22 0.22 0.42
V High 0.46 0.43 0.44 0.58

LR-unbal

V Low 0.59 0.40 0.48 0.54
Low 0.67 0.32 0.44 0.53

Medium 0.63 0.40 0.49 0.65
High 0.63 0.52 0.57 0.74
V High 0.65 0.89 0.75 0.93

LR-bal

V Low 0.51 0.55 0.53 0.69
Low 0.60 0.45 0.52 0.64

Medium 0.58 0.55 0.56 0.73
High 0.59 0.58 0.59 0.75
V High 0.76 0.81 0.78 0.87

DT

V Low 0.59 0.32 0.42 0.50
Low 0.58 0.39 0.47 0.57

Medium 0.59 0.45 0.51 0.63
High 0.61 0.47 0.53 0.69
V High 0.65 0.86 0.74 0.91

Table 2: transac-bal to determine Item Price Bands

Table 3: Evaluation Metrics for Different Price Affinity Models

5 CONCLUSION
In this paper, we discuss a novel approach to incorporate price-
related user-item signals into recommender systems to personalize

their output. This is done by assigning price bands to items of dif-
ferent types, using historical user-item data to predict user price
affinity and using this affinity along with an item price band simi-
larity score to re-rank item recommendations anchored on a (user,
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Figure 3: Comparison of Evaluation Metrics for Balanced Logistic Regression with k-means vs transac-bal item price banding

Figure 4: Top 10 similar Product Types, Price Bands to Medium-2 Bed Sheets

Figure 5: Viewed also Viewed recommendations for a dog food container item
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Item Price Band Method User Price Affinity Method NDCG@5 MHR@5 MRR@5 MAP@5

- Relevance - 0.4375 0.8480 0.5418 0.2048

k-means Baseline 0.4381 0.8493 0.5418 0.2053
k-means LR (unbalanced) 0.4386 0.8504 0.5417 0.2057
k-means LR (balanced) 0.4388 0.8508 0.5417 0.2057
k-means Decision Trees 0.4385 0.8503 0.5416 0.2056

transac-bal Baseline 0.4384 0.8503 0.5415 0.2054
transac-bal LR (unbalanced) 0.4388 0.8519 0.5410 0.2057
transac-bal LR (balanced) 0.4389 0.8524 0.5408 0.2057
transac-bal Decision Trees 0.4386 0.8513 0.5411 0.2056

Table 4: Evaluation Metrics for Different Re-ranking Experiments (using Price Affinity only)

Price Similarity Method NDCG@5 MHR@5 MRR@5 MAP@5

- Relevance - 0.4375 0.8480 0.5418 0.2048

Pearson Correlation 0.4402 0.8557 0.5403 0.2067
Matrix Factorization 0.4403 0.8565 0.5400 0.2067

Table 5: Evaluation Metrics for Different Re-ranking Experiments (using Price Affinity (best) with Price Similarity)

item) pair. We demonstrate statistically significant improvement in
offline ranking metrics after explicitly including price inputs (user
price affinity using balanced logistic regression with transaction-
balanced price bands; item price similarity using matrix factoriza-
tion). To compute price affinities, other user-website interaction
data such as user’s historical search queries can also be used. In
the future, we plan to learn embeddings which implicitly encode
item price information and user representations such that similarity
between user and item embeddings is indicative of price affinity.
We can also experiment with other pairwise or listwise learning to
rank methods to improve the current pointwise ranking function.
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